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A classical path to unification

K Hasselmann

Max Planck Institute for Meteorololgy, Hamburg

E-mail: klaus.hasselmann@zmaw.de

Abstract. An overview is given of a classical unified theory of gravity, elementary particles
and quantum phenomena based on soliton solutions of Einstein’s vacuum equations in twelve
dimensional space. Bell’s theorem on the Einstein-Podolsky-Rosen experiment, which is widely
interpreted as ruling out classical explanations of quantum phenomena, is shown to be non-
applicable as violating time-reversal symmetry. Entanglement is a relativistic consequence of
Newon’s third law and a property of all time-symmetrical theories, whether classical or quantal.
The metric solitons (metrons) are composed of strongly nonlinear periodic core components,
far fields corresponding to the classical gravitational and electromagnetic far fields of point-like
particles, and further fields representing the weak and strong interactions. The core fields
represent nonlinear eigenmodes trapped in a self-generated wave guide. Computations are
presented for the first family of elementary particles corresponding to the lowest nonlinear
eigenmodes; the second and third families are assumed to correspond to higher eigenmodes.
It is shown that the periodicities of the soliton core modes produce the wave-particle duality
paradoxes of quantum phenomena, as exemplified by single- and double-slit particle diffraction
and the discrete structure of atomic spectra.

1. Introduction

The paradoxes faced by physicists in the beginning of the last century gave rise to two conceptual
revolutions which resulted in two very different pictures of physical reality. The alternative views
have still not been reconciled within a unified theory to this day.

The paradox of the Galilean invariance of the speed of light was resolved by Einstein (and
later extended to arbitrary coordinate transformations) by the recognition that the concepts of
space and time could not be accepted as given a priori, but must be defined explicitly, together
with the properties of the other physical objects with which they were to be combined in a
physical theory. In contrast, the paradox of the observation of both wave-like and corpusular
properties in the same microphysical phenomena was resolved by Born, Heisenberg, Jordan,
Bohr, Pauli and other proponents of the new quantum theory by the opposite approach of
rejecting the concept of real existing microphysical objects as meaningless. Meaningful was only
the prediction of the outcome of experiments. The experiments themselves must nonetheless
still be described in terms of the microphysical objects which have been declared before to defy
definition.

Despite the unresolved conceptual problems of the underlying tenets of quantum theory, the
theory has been extremely successful in describing a wide spectrum of quantum phenomena,
many with impressive accuracy. And it has withstood for more than eight decades all attempts
to demonstrate logical inconsistencies in its axiomatic structure. Indeed, the critical analysis of
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Einstein, Poldolsky and Rosen [16], suggesting that quantum theory was incomplete, is widely
interpreted today, in conjunction with the experimental validation of Bell’s [5] inequality theorem
on the EPR experiment, as demonstration that classical theories are fundamentally unable
to explain the quantum theoretical phenomenon of entanglement, as exemplified by the EPR
experiment.

It is therefore understandable that most unification approaches, such as string theory [22],[39]
or quantum loop gravity [42],[7], seek to incorporate gravity in a broader theory that accepts
the basic tenets of quantum theory, and its relativistic generalization, quantum field theory. We
explore nevertheless the alternative route of generalizing Einstein’s theory of gravity in order to
incorporate quantum phenomena. The motivation for our approach is threefold.

First, we show in the next section that the popular “no go” misnomer [49] of Bell’s theorem
ignores the essential locality condition that Bell himself stressed. Entanglement is found to
be a fundamental property not only of quantum theory, but of all theories, whether quantal
or classical, that satisfy microphysical time-reversal symmetry. Entanglement is a necessary
relativistic consequence of Newton’s third law actio = reactio.

Secondly, we present in Section 3 a classical theory of elementary particles that resolves
the wave-particle duality paradox that was the original motivation for the creation of quantum
theory. Fields and particles are derived as integral components of a single object, the metric
soliton (metron) solutions of Einstein’s vaccuum equations

ELM = 0 (1)

in twelve-dimensional space, where

ELM = RLM −
1

2
gLMR

N
N (2)

is the Einstein tensor and RLM the Ricci curvature tensor (cf. [37]; details will be given later).
The soliton solutions of eq.(1) consist of a strongly nonlinear periodic eigenmode concentrated

in the soliton core, far fields corresponding to the classical electromagnetic and gravitational
fields of point-like particles, and further fields representing the weak and strong forces. The
solutions reproduce the basic symmetries and other properties of elementary particles.

Thirdly, we show in the Section 4 that the metron model yields a straightforward explanation
of the wave-like interference properties of particles observed in microphysical phenomena.
The interferences arise through the interactions of the periodic core mode of the soliton
solution with its own field, after the field has been scattered off other matter. As examples,
we compute the diffraction of a stream of particles for the standard single and double-slit
experiments and summarize the metron interpretation of atomic spectra as an amalgam of
quantum electrodynamics and the original Bohr model of orbiting electrons.

Concepts related to the metron model have been proposed previously. The interpretation
of particles as solitons was popular at the turn of the 19th century (see, for example, [1], or
Lorentz’s [35], [36] well-known model of the electron). The advent of quantum theory, however,
in response to the mounting paradoxes of microphysics, deflated the belief that particles could
be represented by something as simple as solitons, and interest in this approach faded. The
attribution of the wave-like interference properties of particles to a guiding periodic field was
proposed by de Broglie [12],[13] and developed further by Bohm [6] (see also Holland [29]).
However, in contrast to the de Brogle-Bohm “pilot” wave, which was introduced ad hoc as an
additional external field independent of the particles (which were also prescribed rather than
derived), the relevant periodic core mode of the metron model represents an integral component
of the soliton system itself.

The metron model was first developed in a four-part paper using inverse modelling methods
([23] - [26], referred to in the following as H; see also [27], [28] and [34]). The solitons were treated
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Figure 1. Alternative interpretations of the EPR experiment. A: a hidden-variable local model
(disentangled, in disageement with experiment); B: the quantum theoretical picture of space-like
entanglement; C: a time-symmetrical classical model with past-future entanglement.

as perturbations superimposed on a constant background metric. However, explicit numerical
solutions, illustrating the nonlinear wave-guide/trapped-mode interactions that lead to solitons,
were presented only for a simpler scalar analogue of the Einstein equation. The number of
dimensions and metric signature of extra-space were also left open.

In the present paper, we present now numerical solutions for the full system (1). The
solutions confirm the basic concepts of H, but yield also a number of new insights and important
modifications of the original metron model. In particular, a background wave field has been
introduced that defines the basic physical constants of the theory (the vacuum eqs. (1) contain
no physical constants apart from the velocity of light), as well as resolving a number of other
open questions listed in H.

Our overview in Sections 3 and 4 of the application of the metron model both for the
computation of elementary particles and the interpretation of quantum phenomena at lower
energy levels necessarily omits many technicalities. More detailed expositions are in preparation.
The last Section 5 concludes with a summary of the basic metron concepts in relation to quantum
field theory.

2. Entanglement

Entanglement – the apparent conflict with causality of the measured correlation between space-
like separated particles, or other objects, emitted from a common state – is widely regarded as a
defining property of quantum theory [41], [38], [20]. Particles originating from a common state
will necessarily be correlated; they are termed entangled if the correlation violates causality
in the sense assumed by Bell in the derivation of his inequality relation. Bell’s theorem was
derived for classical particles under the locality condition that measurements performed on
space-like separated particles are independent. In the case of the EPR experiment, the quantum
theoretical prediction Cab = − cos(dadb) of the correlation between the spins sa, sb of two
particles measured with Stern-Gerlach magnets oriented in the directions da,db, respectively,
violates Bell’s inequality relation. Experiments [18], [2] have clearly confirmed the quantum
theoretical prediction. Thus the EPR system is entangled, and cannot be explained by a classical
model satisfying the locality condition.

Although locality appears to be a self-evident requirement of causality, it corresponds, in fact,
to the traditional concept of causality only for macrophysical systems characterized by an arrow
of time. On microphysical scales, locality is in conflict with the more fundamental condition of
time-reversal symmetry. Entanglement is found to be a universal feature of time-symmetrical
microphysics, whether quantal or classical. However, the implications of time-reversal symmetry
for microphysical systems are rather counterintuitive and require a more careful inspection of
the concept of causality.

The alternative interpretations of the EPR experiment are illustrated in Figure 1. The
left panel A corresponds to the classical hidden-variable model discussed by Bell, assuming
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independence of the two spin measurements. The diagram is based on directed arrows-of-time
connecting the emission and measurement processes.

The middle panel B corresponds to the standard quantum theoretical interpretation, in which
the spin measurement sa of particle a leads to a simultaneous collapse of the state vectors for
both particles a and b. Entanglement appears in this representation as a causality-violating
space-like phenomenon directly connecting the two measurement processes.

The right panel C represents the interpretation of entanglement for a classical model
exhibiting time-reversal symmetry. A change in the orientation db of the Stern-Gerlach magnet
for the second particle b affects not only the local measurement sb, but the entire trajectory
of particle b, from the time of emission to the time of detection. This modifies the emission
process itself, and thereby also the emission of the first particle a and the resultant spin
measurement sa. Thus, the entire experiment, from the common emission process to the final
particle measurements, is seen as a single, coupled, time-symmetrical system.

Time-reversal symmetry has been evoked by Costa de Beauregard [8], Davidson [10], Cramer
[9] and Basini et al [4] to interpret quantum theoretical entanglement. However, it has apparently
not been generally recognized that time-reversal symmetry implies entanglement for essentially
all systems, whether classical or quantal. The debate on the foundations of quantum theory is
thereby circumvented, opening the door to the development of a general classical theory unifying
all forces of nature

The implications of time-reversal symmetry for classical microphysical systems are best
illustrated by the photon version of the EPR experiment, in which two photons rather than
particles are emitted from a common initial state. We assume that in the classical theory, the
electromagnetic far fields of particles correspond (as in the case of the metron model) to the
standard electromagnetic fields of classical point-like particles.

The requirement that total four momentum is conserved for a finite set of interacting point-
like particles that are initially far separated, and diverge again after interacting via their far fields,
implies that the interactions between the particles must be represented by time-symmetrical
potential functions composed of equal advanced and retarded components. This was pointed
out already by Einstein [14] in an exchange with Ritz [40], who had advocated augmenting
Maxwell’s equations by an outgoing radiation condition. Ritz’s view is consistent with the
observed radiation of accelerated charged particles to space, but violates the conservation of
four-momentum for a closed system of interacting particles. Einstein’s view was supported
by Tetrode [44], Frenkel [19] and Fokker [17]. It was developed in detail later by Wheeler and
Feynman [46], [47], who explained the observed radiative damping by interactions with a distant
ensemble of absorbing particles. A generalization to gravitational interactions has been given
by Hoyle and Narlikar [30]. Einstein’s view, based on time-reversal symmetry, is now generally
accepted.

Figure 2 illustrates the time-symmetrical electromagnetic coupling between two particles
a and b travelling on trajectories xλa = ξλa (σa), x

λ
b = ξλb (σb). The coupling occurs along

both branches of the light cone ξ2ab = ξλabξ
µ
abηλµ = 0, where ξλab = xλa − xλb and ηλµ = diag

(+1,−1,−1,−1) (the summation convention is applied only to tensor indices, in this case λ, µ).
The coupled equations for the rate of change of the particle momenta pλa , p

λ
b (ignoring the

singular field-particle self-interactions at the locations of the particles, which in a complete
theory, including the finite particle core, are treated as a regular part of the internal particle
structure, cf Section 3) are given by [47]

dpλa(xa)

dσa
=

∫

Kab
∂

∂ξaλ
[δ(ξ2ab)p

µ
b paµ]dσb (3)

with a second equation in which a and b are interchanged. Kab = Kba denotes a symmetrical
coupling expression dependent on the individual particles’ mass m and charge q (in cgs-
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Figure 2. Past-future entanglement in relativistic time-symmetrical systems. The acceleration
of particle a at position a2 depends on the states of particle b at both positions b1 and b2 on the
backward and forward light cones (dashed lines), respectively. The interactions a1 ↔ b1, b1 ↔
a2, a2 ↔ b2, b2 ↔ a3 represent a local time-symmetrical transfer of four-momentum in accordance
with the relativistic generalization of Newton’s third law actio = reactio.

ESU units, Kab = qaqb(mamb)
−1). The path variables are normalized by the condition

(dξλ/dσ)(dξλ/dσ) = 1. For simplicity, the particle spin (included in the full metron model,
Section 3) has been ignored.

Since
∂

∂ξaλ
[δ(ξ2ab)p

µ
b paµ] = −

∂

∂ξbλ
[δ(ξ2ab)p

µ
b paµ], (4)

it follows that

∆pλa =

∫

dpλa
dσa

dσa = −∆pλb = −

∫

dpλb
dσb

dσb (5)

Thus pλa + pλb is conserved – in accordance with the principle actio = reactio.
We note that the relativistic generalization of Newton’s third law applies already at the local

level: the conservation of momentum holds for the interactions at all particle-pair positions
connected by positive or negative light cone segments (Figure 2):

δ(
dpλa
dσa

)dσa = −δ(
dpλb
dσb

)dσb (6)

Thus, although it is customary to speak of a photon travelling from particle a to particle b (or
from b to a), the interaction is, in fact, completely time symmetrical, the photon representing
rather an entanglement between each pair of light-cone-connected particle states1.

1 Not addressed here is the basic quantum theoretical result that for a periodic electromagnetic field, the
momentum transfer is quantised. Following Einstein [15], this can be attributed within the framework of a quasi-
classical model (a fully classical interpretation is outlined in Section 4.2) to the discrete structure of the atomic
states from which the electromagnetic radiation emanates. For the present discussion, however, the extension
of the present two-particle interaction picture to include these interactions - which again underly time-reversal
symmetry – is irrelevant.
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The implications of time-reversal symmetry and past-future entanglement for the concept
of causality have been discussed in detail by Wheeler and Feynman [47]. Although counter-
intuitive, it leads to no logical contradictions, provided the application of the familiar concept
of an arrow of time is systematically replaced by a time-symmetrical picture.

The application of these concepts to the photon version of the EPR experiment is
straightforward. The “particles” a and b in Figure 1 represent photons coupling the intial
and final electron states in the emission and detection systems, respectively, the transmitted
photons being filtered by the polarization filters da, db. The initial and final states are thus
directly “entangled”, in accordance with Figure 1C.

The same picture applies also to the particle version of the EPR experiment, although in this
case the time-symmetrical coupling of the initial and final states is less transparent. However, it
is sufficient to recognize that also in this case the central assumption of Bell’s analysis, namely
the independence of the initial emission process on the later measurement process, implies an
arrow of time, and is therefore inapplicable for time-symmetrical systems.

3. The metron model

3.1. The Einstein vacuum equations
Having established that Bell’s theorem is no hindrance to the development of a classical theory of
quantum phenomena, we turn now to the metron model. We seek a representation of elementary
particles as soliton solutions of the twelve-dimensional Einstein vacuum equations (1), without
a cosmological term. The equations may be written alternatively in the Ricci-flat form

RLM = 0, (7)

where
RLM = ∂MΓN

LN − ∂NΓN
LM + ULM (8)

is the Ricci curvature tensor, with

ULM = ΓN
LO ΓO

MN − ΓN
LM ΓO

NO, (9)

ΓL
MN =

1

2
gLO [∂MgON + ∂NgOM − ∂OgMN ]

= gLOΓOMN , (10)

and where

ΓOMN =
1

2
[∂MgON + ∂NgOM − ∂OgMN ] (11)

is the affine connection of the metric tensor.
Essential for our approach is the exclusion of the matter-dependent source terms. This

enables particles to be derived as the soliton solutions of eq.(1), rather than being specified a
priori through the source terms.2

We make a second important assumption, following Klein [33]: all fields are assumed to be
periodic (or constant) with respect to extra-space and time (in the soliton restframe). The
extra-space and temporal periodicities are prescribed; they will be identified with the particle
masses and generalized charges. The periodicity assumption reduces the problem of solving the
twelve-dimensional Einstein equations to a three-dimensional problem. In the particle models

2 This is also in the spirit of Einstein, who is said to have the regarded the matter-dependent energy-momentum
source term tensor of his equation as “plywood” compared to the “marble” of the geometrical curvature term.
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presented below, the dimensionality is reduced further to one by assuming spherical symmetry
with respect to physical space.

Formally, the periodicity assumption with respect to extra-space implies that the twelve-
dimensional manifold can be represented as a bundle [43],[21],[31] composed of an eight-
dimensional fibre (extra-space), dependent on a small number of discrete wavenumber
parameters, defined over a four-dimensional base space (spacetime). The periodicity ansatz
avoids also the need to compactify extra-space onto a very small Planck sphere in order to
explain why we experience physics in only four dimensions. In this respect our approach differs
from string theory and other higher-dimensional models.

We derive the metric soliton solutions as perturbations

g′LM = gLM − η
(b)
LM (12)

of the metric gLM relative to a homogeneous background metric η
(b)
LM . The latter is assumed to

consist of a superposition

η
(b)
LM = ηLM + η̃LM (13)

of a constant diagonal metric

ηLM = diag(+1,−1,−1,−1,−1, ...,−1,+1) (14)

and a background free-wave field η̃LM .
The first four components η00, . . . , η33 of the mean background metric (14) refer to physical

spacetime. We use natural units: c = 1, and (in wavenumber-dependent expressions below)
h̄ = 1. The spacetime signature pattern is repeated in the metric components η44, . . . , η11,11 of
the fibre, the first seven of which have negative sign, while the sign of the last component is
again positive.3

The spacetime components of the metric perturbation g′LM represent the normal gravitational
field, while metric-tensor components with fibre-only or mixed spacetime-fibre indices will be
identified with fermion and boson fields, respectively.

The introduction of a background free-wave field η̃LM represents an important extension of
the original metron model (H). The wave field consists of a continuum4

η̃LM =
∑

w

η
(w)
LM =

∑

w

B
(w)
LM exp i(k

(w)
N xN ) (15)

of statistically independent wave components η
(w)
LM of amplitudeB

(w)
LM whose wavenumbers satisfy

the dispersion relation

k
(w)
L k

(w)
M ηLM = 0. (16)

of linear waves on the twelve-dimensional bundel. The fibre wavenumber components kL, L

= 4, . . . , 11 consist of a prescribed discrete set identical to the fibre wavenumber components
of the soliton solutions. They represent the generalized particle charges. The spacetime
wavenumbers kL, L = 0, . . . , 3 consist of a continuum lying on three-dimensional subspaces
corresponding to the particle masses.

3 In the inverse analysis of H, both a Euclidean and a Minkowski-type extra-space metric were considered.
However, it was found that the Euclidean metric fails to yield soliton solutions of the full tensor equations (1).
The possible occurrence of tachyons in non-Euclidean higher-dimensional gravity theories is irrelevant for the
metron model, as the periodic higher dimensional space serves only as a template for deriving field equations in
four-dimensional spacetime.
4 Following common practice, we write the statistical continuum of wave components as a sum rather than as a
formally more correct (but more cumbersome) Fourier-Stieltjes integral.
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The inclusion of a background wave field resolves a number of open questions, listed partially
already in H: 1) by assuming that the background wave field exhibits the same periodicities
as the metron solutions, it enables the introduction of the basic physical constants lacking
in the vacuum equations (1) themselves; 2) it ensures the uniqueness and stability of the
metron solutions; 3) it removes, through selective attenuation, a spurious super strong far-
field component that had concerned already Kaluza [32] in his five-dimensional generalization
of Einstein’s equation, and 4) it explains the left-handed polarity of the weak interactions and
the finite masses of the weak-interaction gauge bosons in terms of interactions with a sub-set of
background field components exhibiting these properties.

We consider the role of interactions with the background wave field later in Section 3.5, after
we have presented the basic properties of the metron soliton solution for a constant background
metric.

To obtain unique solutions, the Einstein equations, with appropriate boundary conditions,
must be augmented by additional gauge conditions [37]. We choose the usual Lorentz gauge,
the divergence condition

∂Mh
M
L = 0, (17)

where

hLM = g′LM −
1

2
ηLM (ηNOg′NO). (18)

represents the trace-modified metric perturbation.
Expressed in terms of hLM , and applying (17), the Einstein vacuum equations (1) then take

the general form
2nhLM = qLM , (19)

where 2n = ∂N∂Oη
NO denotes the higher-dimensional box operator and qLM are nonlinear

source terms.
Formally, qLM represent the gauge-field interactions that ensure the invariance of the

Einstein equations with respect to coordinate transformations. However, this property,
although important in comparing the formal structure of the higher-dimensional Einstein-Hilbert
Lagrangian underlying the metron model with the Standard Model Lagrangian of quantum field
theory (cf. H), is irrelevant for the present discussion. For our purposes, it is sufficient to note
that the perturbation expansions of the source terms qLM begin with quadratic terms and are
homogeneous of second order with respect to the derivatives. The algebra of the perturbation
expansion can then be summarized in terms of interaction diagrams, with associated simple
rules for the computation of the various vertex contributions (cf. Section 3.3).

The traces of the fields g′LM and hLM are found to be very small, so that g′LM ≈ hLM . Results
will be presented for hLM , but can equally be interpreted as representing g′LM .

3.2. The soliton dynamics
The system (19) supports soliton solutions consisting of periodic nonlinear eigenmodes that are
trapped in a wave guide. The soliton structure differs significantly from the familiar Korteweg-de
Vries balance between linear dispersion and nonlinear amplification. The trapping wave guide
hg represents a distortion of the metric in which the eigenmodes hc propagate (Figure 3). It is
generated by the radiation stresses of the trapped eigenmodes. The eigenmodes (core modes) are
concentrated in the strongly nonlinear metron core, decreasing exponentially for larger distances
r from the core, while the non-periodic wave-guide far fields fall off as 1/r.

For periodic, spherically symmetric soliton solutions, the system (19) reduces to a set of
coupled equations of the general form
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Figure 3. Schematic diagram of the periodic trapped-mode (upper panel) and wave-guide (lower
panel) components of a metric soliton in the product space physical-space × fibre (from H). The
trapped core modes are periodic also with respect to time.

(

d2

dr2
+

2

r

d

dr
− (κ(c))2 + u(c)(h(g))

)

h(c)(r) = 0 (core modes) (20)

(

d2

dr2
+

2

r

d

dr

)

h(g)(r) = q(g)(h(c)) (wave guides) (21)

where h(c) denote the amplitudes of the fundamental periodic core modes of the soliton, h(g) are
non-periodic wave-guide fields generated by quadratic difference interactions, u(c)(h(g)), q(g)(h(c))
represent nonlinear interaction terms, and

(κ(c))2 = −k
(c)
L k(p)L = −(k

(c)
0 )2 +

10
∑

L=4

(k
(c)
L )2 − (k

(c)
11 )

2. (22)

The parameter κ(c) determines the asymptotic exponential fall-off rate of the core mode and
thus the effective spatial scale of the soliton solution.

We have suppressed the tensor structure of the fields, which slightly modifies the spherically
symmetric form of the Laplace operator for the wave-guide components, and have similarly
ignored small modifications of the spherically symmetric equations for solitons composed of
several spinor core-mode components (cf. Section 3.7.1). Not included in eq (20) are also
interactions with the second-harmonic fields and the direct cubic interaction term, both of which
are formally of the same perturbation order as the interaction with the wave-guide field. These
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Figure 4. Near- and far-field components of metron solutions. Full line: core modes (fermions),
decreasing exponentially for large r; dashed line: wave-guide fields (massless bosons), decreasing
asymptotically as 1/r.

interactions are neglible under the second of the following two inequality conditions, which are
found to be essential for the existence of soliton solutions:

0 < (κ(c))2 ≪ (k
(c)
L )2, L = 0, 4, 5, . . . 11, (23)

The left inequality is necessary in order that the core modes are localized in the soliton core,

falling off exponentially for large r. The right inequality implies that |dh(c)/dr| ≪ |k
(c)
L h(c)|,

L= 0, 4, 5, . . . 11. This turns out to be a key condition both for the convergence of the iterative
construction of numerical solutions of the system (20), (21) and for the identification of the
wave-guide far fields with the classical electromagnetic and gravitational far fields of point-like
particles.

The basic core-mode/wave-guide interaction mechanism is independent of the details of the
tensor and periodicity structure of the soliton solutions. However, these properties are important
for the mapping of the different soliton components into the associated classes of elementary
particles. We distinguish in the following between tensor indices L,M, . . . of the full twelve-
dimensional bundle, fibre tensor indices l,m, . . . , spacetime indices λ, µ, . . . and physical-space
indices ī, j̄, . . ..

Core-mode components are identified with fermions, wave-guide components with bosons
(Figure 4). The mapping relations of the tensor components are listed in Table 1, while the
associated wavenumber components are shown in Figure 5. Fermion fields hlm lie in the fibre
domain 8 ≤ l,m ≤ 10; the associated wavenumbers kL lie in the complementary index domain
L < 8 and L = 11. This ensures that the fermion core-mode fields satisfy the gauge condition
(17). Boson fields h0l lie in the mixed-index domain 4 ≤ l ≤ 7; the field h0,0 corresponds to
the standard gravitational field (in the particle restframe) of general relativity. Anti-particles
are represented by an inversion of the fibre, i.e. by a change in sign of the fibre wavenumber
components.

The four quantum-theoretical spinor components, represented by left and right handed Weyl
two-spinors ϕL

1 , ϕ
L
2 and ϕR

1 , ϕ
R
2 , respectively, are mapped into metric tensor components in the

fermion sector in accordance with the scheme (representing one particular realization of the
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Figure 5. Wavenumber components (k0, k4 − k7, k11) of fermions (leptons and up and
down quarks). Each fermion is composed of mirrored core-mode pairs with equal wavenumber
components kL for L< 11 and opposite wavenumber components ±k11.

Indices 0-3 4 5 6,7 8,9,10 11

0 - 3 grav el-magn weak strong - -
4 el-magn KSS KSS KSS - KSS
5 weak KSS KSS KSS - KSS
6,7 strong KSS KSS KSS - KSS

8,9,10 - - - - fermion -
11 - KSS KSS KSS - KSS

Table 1. Mapping of metron components into gravitational fields, fermions, electromagnetic,
weak and chromodynamic (strong) bosons, and KSS fields.

mapping of the five independent components of a traceless metric hlm, l,m = 8, 9, 10 into four
spinor components):





h88 h89 h8,10
h98 h99 h9,10
h10,8 h10,9 h10,10



 =







0 ϕL
1 ϕL

2

ϕL
1 ϕR

2 ϕR
1

ϕL
2 ϕR

1 −ϕR
2






(24)

The metron picture yields a simple explanation of the Fermi-Dirac and Bose-Einstein statistics of
fermions and bosons, respectively. Since fermions represent strongly nonlinear fields localised in
the particle core, they cannot be superimposed with the core fields of other particles within the
same particle core. Bosons, in contrast, represent far fields, which can be readily superimposed
beyond the particle core regions.

In addition to the standard gravitational and quantum theoretical fields, Table 1 includes the
afore-mentioned spurious Kaluza Super Strong (KSS) fields in the non-mixed fibre-index sector
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Figure 6. Panels (a), (b): generation of wave-guide fields (dashed arrows) by quadratic
interactions of core modes (full arrows) and mirrored core modes (double-headed arrows). Cross-
bars denote complex-conjugate fields (not anti-particles). Panels (c), (d): feedback of wave-guide
fields on the eigenvalues of core modes. The dominant feedbacks are cross-interactions between
core modes and wave-guide fields generated by mirrored core modes.

complementary to the fermion sector. It will be shown in Section 3.5 that these are effectively
removed through interactions with the background wave field.

The wavenumbers kL represent generalized particle charges. The wavenumbers k0, k4,
correspond to the particle mass and electric charge, respectively, the associated wave-guide far
fields h00, h04 representing the classical gravitational and electromagnetic far fields of a point-
like particle (cf. Section 3.4). The weak iso-charge and strong coupling coefficients are given,
respectively, by the wavenumbers k5 and wavenumber vectors kr,kb,kg in the colour plane
k6.k7, where kr+kb+kg = 0 (cf. Figure 5). In analogy with Einstein’s four-dimensional general
relativity, k0 plays a dual role of representing both the gravitational and inert mass.

It is shown in the next section that the wave-guide far fields h0L, L = 0, 4, 5, . . . , 10 are
proportional to the wavenumber products k0kL, with a common proportionality factor. The
empirical result that the electromagnetic forces greatly exceed the gravitational forces implies
then k4 ≫ k0 (for the electron, for example, k4/k0 ≈ 1.4 1021). The right-hand inequality (23)
can be satisfied in this case only if the core-mode wavenumber vector includes a component, k11,
say, of approximately the same magnitude as k4, but of opposite metric signature. This is the
motivation for the introduction of a positive time-like sign for the last metric component η11,11.
Since a net force corresponding to h0,11 is not observed, however, the soliton must contain two
“mirrored” core-mode constituents of the same amplitude, whose last wavenumber components
k11 have opposite signs, but whose wavenumbers are otherwise identical5. This results in a
cancellation of the net boson far field h0,11, while the gravitational, electromagnetic and other
far fields are not affected.

3.3. Interaction diagrams
The interactions between core-mode and wave-guide fields can be conveniently summarized in
terms of interaction diagrams (Figure 6). Core-mode fields are represented by full arrows,
wave-guide fields by dashed arrows. A double-headed arrow represents the mirrored core

5 Instead of introducing two mirrored components hL,11 ∼ exp(±ik11x
11), one could, of course, equivalently

consider a single component hL,11 ∼ cos(k11x
11). For interaction computations, however, it is more convenient to

work with two complex exponentials.
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mode of a core-mode pair, or the wave-guide field generated by a mirrored core mode. Cross-
bars denote complex-conjugate fields of the same particle (as opposed to the usual Feynman-
diagram notation for anti-particles). Arrow directions indicate the sequence in the perturbation
expansion; the interactions themselves are time-symmetrical.

The coupling coefficients associated with a vertex consist of contractions of tensor expressions
composed of quadratic products of the wavenumber components of any of the incident fields
multiplied by the incident field amplitudes. This yields a forcing of the gravitational, bosonic and

KSS wave-guide fields h
(g)
00 , h

(g)
0l and h

(g)
lm proportional to the square of the core-mode amplitude

times k20 , k0kl and klkm, respectively, with a common proportionality factor.
The very large ratios kl/k0, mentioned above as motivation for the introduction of a time-like

fibre metric signature to satisfy the inequality (23), presents now a further problem: it implies
very large KSS fields in the pure fibre sector compared with the bosonic fields of the mixed
spacetime-fibre sector (cf. Table 1). The KSS fields are not observed; they will be removed in
Section 3.5 through interactions with a background wave field. Before addressing this problem,
however, we investigate first the implications of the wave-guide far fields for the interactions
between well separated particles.

3.4. Far-field interactions
So far, we have considered only an isolated particle at rest at the location x = 0. We consider
now the forces produced by the interaction of the particle with the wave-guide far fields gFLM of
another distant particle (or of several such particles).

According to higher-dimensional general relativity, the force experienced by a particle
propagating with the velocity vL in a perturbed higher-dimensional metric

gLM = ηLM − gFNO(x)η
LNηMO + · · · (25)

can be represented by the geodetic acceleration

dvL

ds
= −ΓL

MNv
MvN . (26)

Applied to the spacetime velocity components (the rate of change of the fibre velocity
components is irrelevant due to the assumed homogeneity on the fibre), this yields

dvλ

ds
= −Γλ

µνv
µvν + F λ

µlv
µvl +Kλ, (27)

where the first term on the right hand side represents the standard Einstein gravitational
acceleration in physical spacetime, the second term the acceleration due to the mixed-index
(i.e. bosonic, cf. Table 1) far fields

F λ
µl = ηνλ (∂νgµl − ∂µgνl) , (28)

or

F λ
µl = ∂λAµl − ∂µA

λ
l with (29)

Aλl = gλl, (30)

and the third term represents the Kaluza super strong (KSS) acceleration

Kλ =
1

2
ηνλ∂νglmv

lvm (31)
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produced by the far fields gFlm in the fibre sector.
The bosonic acceleration expressions (28) - (30) have a structure analagous to the Lorentz

force
mdvλ/ds = eF̂ λ

µ v
µ(vνv

ν)1/2 (32)

where m and e denote the particle’s mass and charge, respectively, and

F̂ λ
µ = ∂λÂµ − ∂µÂ

λ (33)

is the electromagnetic field, expressed in terms of the electromagnetic potential Âλ.
Before proceeding, we must first define what is meant by the velocity vL in twelve-dimensional

space of a “particle” that corresponds to the classical concept of a localized point-like particle in
physical spacetime, but represents a homogeneous periodic wave field with respect to the fibre.
A consistent definition can be obtained by formally relaxing the homogeneity of the periodic
field with respect to the fibre and considering instead a finite-extent wave group of scale R
that satisfies the WKB conditions |kl|R ≪ 1. The metron particle can then be treated as a
12-dimensional wave group propagating with the group velocity

vL = ∂Ω/∂kL, (34)

where Ω(x, k) = 0 represents the dispersion relation of waves in the perturbed twelve-dimensional
space:

Ω(x, k) = gLM (x)kLkM = 0, (35)

with gLM (x) given by eq. (25).
The group velocity is accordingly

vL = 2ηLMkM (36)

The metron relations (28) - (30) can then be recognized as the generalization of the Lorentz
electromagnetic force to all bosonic forces, where the wavenumbers represent, as mentioned
above, the generalized charges of the various fields. In particular, the metron expressions for the
gravitational and electromagnetic accelerations map into the corresponding classical expressions
by applying scaling factors ρ1, ρ2, ρ3:

Aλ4 = ρ1Âλ (37)

F λ
µ4 = ρ1F̂

λ
µ (38)

k4 = ρ2 e (39)

k0 = ρ3m, (40)

where the scaling factors satisfy the condition

ρ3 = ρ1ρ2. (41)

The scaling factors depend on the choice of units in the metron and standard classical theories.
We identify the rest-frame frequency k0 with the mass m via the Planck relation k0 = mc/h̄, or,
in natural units, k0 = m. Thus,

ρ3 = c/h̄ = 1 in natural units. (42)

so that eq. (41) reduces to

ρ1ρ2 = c/h̄ = 1 in natural units. (43)
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Similar scaling factors apply for the relevant relations for the weak interactions (coupling
constant k5) and strong forces (coupling wavenumbers kr,kb,kg) that will be considered after
we have presented numerical metron solutions in Section 3.6 (the remaining wavenumber k11
yields no net force, as pointed out above, since the mixed-index fields gµ,11 occur in cancelling
mirrored pairs). It is found that the free parameters of the metron model (basically, the scale
κ(c) of eq. (22) and the energy level of the background wave field) can be chosen such that the
scaling parameters ρ1, ρ2, . . . for all bosonic forces are in agreement with experiment.

There remains the KSS force. A comparison of eqs.(31) and (29) reveals, as pointed out
already by Kaluza, that, considering alone the contributions to Kλ from the metric components
g44, the KSS force exceeds the electromagnetic force by a factor of the order g44k4/g04k0. Since
the ratio g44/g04 for the fields alone is already of order k4/k0, as pointed out in the previous

section, we obtain for the force ratio Kλ/(F
λ(em)
µ vµ) = O{(k4/k0)

2} ≈ 2 1042 for the electron.
For a viable theory, the KSS fields must therefore clearly be removed by some mechanism. This
is achieved through interactions with the background wave field.

3.5. The background wave field
A background wave field is required not only to attenuate the KSS fields, but also for the other
important reasons mentioned earlier. We summarize in the following only the basic concepts.

Statistical homogeneity implies for the amplitudes of the wave-field representation (15)

< B
(w)
LM >= 0 (44)

and
< B

(w)
LMB

(w′)∗
L′M ′ >= PLML′M ′(k(w)) δww′ , (45)

where the cornered parentheses denote statistical ensemble averages and PLML′M ′ represents
the wave spectrum.

In contrast to the fibre wavenumbers kl, l = 4, 5, . . . , 11, which consist of a discrete set
corresponding to the generalized particle charges, the spacetime wavenumber components

k
(w)
λ , λ = 0, . . . , 3 represent a three-dimensional continuum (since we can no longer remain in

the restframe of a particular particle) satisfying the de Broglie dispersion relation

k
(w)
λ k(w)

µ ηλµ −m2
w = 0, (46)

where the constants mw represent (to within a small deviation of order (κ(c)/k
(c)
0 )2, cf. eq. (23),

that is irrelevant here) the discrete masses of the particles. Applying eqs.(16) and (46), the fibre
wavenumbers are seen to be inter-related via the particle masses:

k
(w)
l k(w)

m ηlm +m2
w = 0. (47)

We shall be concerned primarily with interactions between the background wave continuum
and the metron soliton in the metron restframe, in which the metron spacetime wavenumber
vector reduces to the metron frequency k0 (i.e. the metron mass), with k = (k1, k2, k3) = 0.
Important for the question of the particle stability is then the background wave spectral density

PLML′M ′(k(w)) at k(w) ≈ 0, where the frequencies k
(w)
0 of the background wave field and

metron core mode are sufficiently close that the two fields can exchange energy through resonant
interactions. However, other background wave components with k 6= 0 can engage in a resonant
energy transfer at higher interaction order. The full background spectrum enters also in the
computation of the damping factors for the KSS far fields, which is not dependent on resonant
interactions.
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Figure 7. Selective damping of KSS fields (dashed arrows) through interactions with background
wave fields (dotted arrows). Panels (a), (b): damping of KSS fields by cubic interactions with
the background wave fields and their mirrored partners. Panels (c),(d): analagous diagrams for
the damping of the mirrored KSS fields.

Important for the interactions with the background wave field are not only their wavenumbers,
but also their polarization properties. We assume that these correspond to fermion fields, i.e.

that the tensor indices of the background waves B
(w)
LM lie in the domain 8 ≤ L,M ≤ 10.

The general structure of the various interactions with the background wave field are
summarized in the following in terms of interaction diagrams.

3.5.1. The KSS damping mechanism
Figure 7 depicts the interactions that lead to a selective attenuation of the KSS fields. All
wave-guide fields, which are themselves generated by quadratic difference interactions of the
basic core-modes (Figure 6), experience an additional quadratic difference interaction with the
background wave field. This yields a modified field equation for the KSS wave-guide fields of
the form

(

d2

dr2
+

2

r

d

dr

)

hlm −Dklkmh
n
n = qlm, (48)

whereD is a positive damping coefficient given by an integral over the background wave spectrum
(45).

Essential for the selective damping of the KSS fields is the proportionality of the damping
term to the fibre wavenumber product kllm. This implies that the damping of the KSS fields,
which is proportional to quadratic fibre wavenumber products, is very much larger than the
analagous damping expressions for the boson fields, which contain at most one fibre wavenumber
component. Thus, for the KSS field h44, for example, the damping is a factor k4/k0 larger than
the damping of the electromagnetic far field h04, and of order k24/k

2
0 larger than the damping

of the gravitational field (cf. eq. 27). For a suitable choice of the the damping factor (i.e.
of the energy density of the background wave spectrum) the KSS fields can thus be effectively
attenuated within a scale of the order of the soliton-core scale (κ(c))−1, while the electromagnetic
and gravitational far fields remain unaffected.

3.5.2. Uniqueness and stability of the metron solutions
The coupled core-mode/wave-guide system (20), (21) yields a continuum of possible soliton
solutions, given an arbitrary set of fibre wavenumbers, provided only that the wavenumbers
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Figure 8. Interactions ensuring stability and uniqueness of the soliton solutions.

satisfy the inequality relations (23). In the absence of a background wave-field, however, the
solutions are unstable and decay into free waves. But if there exists a background wave field, the
sub-set of soliton solutions whose fibre wavenumbers are the same as those of the background
wave field are stabilized through resonant interactions with the background field. The radiative
losses are balanced in this case by the radiation pressure of the background waves.

The relevant interactions are summarized in Figure 8. Diagrams a show the interactions
producing a net transfer of energy from the background wave field to the core mode, while
diagrams b show the balancing interactions yielding a net transfer from the core mode to the
background wave field (the number of interactions differ in the two cases, as it is assumed
that the background wave field enters only to second order, while the core-mode interactions
are retained to third order). To limit the number of diagrams, we have not differentiated in
this case between mirrored partners. Starting from an arbitrary initial soliton solution with
fibre wavenumber components corresponding to the background wave field, the soliton solution
adjusts to a unique solution determined by the energy density of the background wave field.

A further important process is the interaction with an exceptional background wave field
characterized by left-handed polarization and a relatively large frequency (mass) m = (kλk

λ)1/2.
This is the origin of the chirality of the weak interactions and the mass of the weak interaction
gauge bosons. We return to the weak interactions in Section 3.7.4, after we have reviewed some
further properties of the metron model.

3.6. A numerical metron solution
Numerical solutions of the system (20), (21) can be constructed iteratively. Starting from a
first-guess core mode, one computes the wave-guide field that it generates. This enables the
computation of a second-guess core mode, including the feedback from the wave-guide field, and
so on. For a given background wave field and prescribed wavenumbers satisfying the inequalities
(23), the solution typically converges within twenty to forty iterations.

Figures 9, 10 show the computed core-mode and wave-guide fields, respectively, for a scalar
model containing only a single core mode, with wavenumbers k0 = 0.1, k4 = 1000 (corresponding
to a gravitational and electromagnetic far field) and k11 = ±k4(1 − 0.505 10−8), yielding
κ = 0.01. The model may be regarded as a rudimentary representation of the electron. It
will be generalized in the next section to include the particle spin and weak interactions. The
ratio k4/k0 = 104 (imposed by computer limitations) is considerably smaller than the real ratio
≈ 1.4 1021 for the electron, but the computations can be readily scaled to realistic values using
the scaling relations
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Figure 9. Core-mode field of the scalar metron solution.

h
(c)
89 =

(

κ2

k0 k4

)

fc(r) for the core-mode field (49)

h
(g)
0l =

(

κ2kl
k0k24

)

fg(r) for gravitational and electromagnetic far fields (50)

h
(g)
lm =

κ2klkm
k0k

3
4

f̂g(r) for KSS far fields. (51)

where

fc(r) =

{

αc for r = 0
βce

−κ r (κ r)−1 for κ r ≫ 1

}

(52)

fg(r) =

{

αg for r = 0
βg (κ r)

−1 for κ r ≫ 1

}

(53)

f̂g(r) =

{

α̂g for r = 0

β̂g e
−κ̂ r (κ̂ r)−1 for κ̂ r ≫ 1

}

, (54)

αc, βc, αg, βg, α̂g, β̂g are constants of order unity, and the exponential fall-off rate κ̂ of the KSS

fields hglm is given by κ̂ = (Dklkm)1/2, cf. eq.(48).
Although the exponential fall-off rate of the KSS fields yields neglible fields beyond the

particle core, the KSS fields nevertheless still exceed the gravitational and electromagnetic fields
within the core region itself. This is a necessary condition for the trapping of the core mode,
since the electromagnetic wave-guide component, the largest non-KSS wave-guide field, has the
wrong sign for trapping.

The energy level of the background wave field and the particle scale κ−1 (the two free
parameters of the model) can be chosen such that the scalar metron solution reproduces the
charge and mass of the electron, while satisfying the trapping condition and the condition that
the electron scale κ−1 is large compared with the Compton radius h̄/(mc) = 3.86 10−11 cm
(eq. 23)). The parameters can furthermore be chosen such that κ−1 is of the same order as the
Bohr radius h̄2/(e2m) = 5.3 10−9 cm, which will be found below (Section 4.2) to be a necessary
condition for the metron interpretation of atomic spectra.
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Figure 10. Wave-guide fields of the scalar metron solution. Top panel: linear fields; bottom
panel: log-log plot (k̂ ≡ κ;N44, N00 are normalization factors).

To obtain a realistic base model for the representation of the elementary particle spectrum,
our model needs to be extended through the inclusion of the particle spin and the fibre
wavenumber components k5 and k = (k6, k7) representing the weak and strong interaction
coupling constants, respectively. We introduce these extensions in the following section
describing the metron representations of the electron, neutrino and proton/neutron system.

3.7. The first family of elementary particles
3.7.1. The electron
Spin can be introduced into the metron model by replacing the scalar core-mode component by
a four-spinor field composed of left and right two-spinor fields ψL = (ϕL

1 , ϕ
L
2 ), ψ

R = (ϕR
1 , ϕ

R
2 )

representing metric components as defined in Table 1.
In the linear approximation, the two-spinors are coupled via the Weyl form

(σī∂ī − ∂t)ψ
L = iω̂ψR (55)

(σī∂ī + ∂t)ψ
R = −iω̂ψL. (56)

of the Dirac equation, where σī (̄i = 1, 2, 3) denote the Pauli matrices and

ω̂2 = −k
(c)
l kl(c) = (κ(c))2 + (k

(c
0 )

2, (57)

We seek as before a spherically symmetric solution. In view of the coupling relations (55), (56),
we can no longer simply assume ψL,R = ψL,R(r). Instead, the isotropy of a four-spinor field that
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is periodic in time t, ψL,R ∼ exp(iωt) is represented by the general form

ψL = {−(ω̂ + ω) + iσī∂ī}f(r) e
iωtA (58)

ψR = {(ω̂ + ω) + iσī∂ī}f(r) e
iωtA (59)

where A = (A1, A2) is an arbitrary constant 2-spinor factor and the function f(r) satisfies the
scalar spherically-symmetric Klein-Gordon equation

{

d2

dr2
+

2

r

d

dr
+ ω2 − ω̂2

}

f(r) = 0 (60)

The relations (58)-(60) represent the linearized four-spinor generalization of the scalar eigenvalue
equation (20).

The nonlinear eigenvalue equations, including the coupling to the wave-guide fields, are
obtained as in the scalar case by substituting the linear form (58)-(59) into the nonlinear Einstein
equations and expanding in a perturbation series.

The analysis carries through effectively unchanged as before. The net wave-guide field
generated by the quadratic interaction of the fermion fields is obtained simply as the sum
of the separate wave-guide fields generated by the individual spinor components: there is no
contribution to the wave-guide fields from the cross-coupling of spinor fields with different
metric indices. The resultant wave-guide fields, including, in particular, the gravitational and
electromagnetic far fields, are furthermore real and exhibit the same isotropic tensor forms as
in the scalar case.

Finally, the nonlinear eigenvalue equation for the common scalar function f(r) of the spinor
fields is identical to the previous nonlinear eigenvalue equation (20) in the scalar case, with
(κ(c))2 = ω̂2 − ω2, and with a nonlinear eigenvalue correction consisting as before of a bi-linear
product of the function f(r) and the net wave-guide field.

In summary, the computations for the scalar metron solution carry over into the four-spinor
case without change for the net wave-guide far fields, while the amplitudes of the four core-mode
components (each of which contributes quadratically to the unchanged net wave-guide field) are
halved relative to the values for the scalar model.

In the presence of an external magnetic field, the particle spin becomes aligned parallel or
anti-parallel to the external field, as in quantum theory, with a resultant net force if the external
field is non-homogeneous. However, these considerations, which become relevant mainly in the
context of atomic spectra, lie beyond the scope of the present overview.

Missing, finally, in our model of the electron are the weak interactions. The weak charge is
represented by the wavenumber component k5 (Table 1). However, in view of the left-handed
chirality of the weak interactions and the finite masses of the associated gauge bosons, the weak
forces can clearly not be treated in analogy with the electromagnetic forces (or the strong forces
discussed in Section 3.7.3) by simply replacing the electric change k4 by k5. Instead, we shall
associate the weak interactions later in Section 3.7.4 with interactions with a background wave
field that exhibits the exotic properties mentioned.

3.7.2. The neutrino
The metron model of the neutrino depends in detail on the just mentioned representation of
the weak interactions later in Section 3.7.4. However, two alternative models can be indicated
already here.

In contrast to quantum field theory, in which the breaking of parity symmetry is described
by the weak interaction sector of the Standard Model Lagrangian, the metron model attributes
these features to an external background wave field. Thus, there is no need to assume (although
it can also not be excluded) a breaking of parity symmetry in the metron soliton itself.
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Two alternative models of the neutrino can thus be constructed through minor modifications
of the electron model. In the first model, we simply replace the electric-charge wavenumber k4
of the electron by the weak-charge wavenumber k5, while setting the mass k0 to zero or a very
small number. In the second model, we set also the right-handed core-mode components to
zero, in accordance with the quantum theoretical picture that the neutrino itself breaks parity
symmetry.

In both cases, we assume that the fibre wavenumber components consist only of the weak-

interation component k
(ν)
5 and k

(ν)
11 ≈ ±k

(ν)
5 .

3.7.3. The proton-neutron system
The metron picture of the proton-neutron system closely parallels the QFT representation:
protons and neutrons are composed of three quarks, which come in two forms: an “up” quark
with charge 2/3e and a “down” quark with charge -1/3e. Each quark is characterized by one
of three different “colours” (blue, b, green, g and red, r)6. The net colour of each three-quark
particle is colourless, i.e. each of the three quarks has a different colour, which cancel in the
sum. Proton-neutron transformations are furthermore mediated by gauge bosons, that convert
an up quark into a down quark, and vice versa.

In the following, we translate these abstract field-operator concepts of QFT into the
corresponding metron picture of real existing particles and fields.

The metron model of the proton or neutron consists of three basic core-mode (quark)
components, with associated zero-wavenumber wave-guide components. Each quark core-mode
component consists of a mirrored pair of four-spinors. The individual metric tensor components
of the core modes are assigned to spinor components in accordance with the mapping relations
of eq.(24).

The associated wavenumbers of the quarks consist of the components k
(q)
0 = m(q) = mass,

k
(q)
4 = electric charge, k

(q)
5 = weak charge, (k

(q)
6 , k

(q)
7 ) = quark colour-charge vector, and

an associated pair of wavenumber components of opposite sign, ±k
(q)
11 , assigned to the two

components of a mirrored core-mode pair. The magnitudes of the fibre wavenumber components

±k
(q)
11 are again chosen such that (κ(q))2 = −k

(q)
L kL(q) ≪ (k

(q)
M )2 for all M. This ensures that

∂ ī ≪ kM , as required for the existence of soliton solutions.
The three colour wavenumber vectors, representing the three colour charges blue (b), green

(g) and red (r), lie in the k6, k7 colour plane (Figure 5). The QFT property of colourless net
particles translates into the condition that the vectors form a symmetrical star:

∑

q=b,g,r

k
(q)
6 =

∑

q=b,g,r

k
(q)
7 = 0, (61)

with
(k

(b)
6 )2 + (k

(b)
7 )2 = (k

(g)
6 )2 + (k

(g)
7 )2 = (k

(r)
6 )2 + (k

(r)
7 )2 = (k(c))2, (62)

where k(c) represents the magnitude of the strong-force coupling constant.
The star symmetry implies, in particular, that the sum of the strong-interaction wave-guide

boson fields generated by the three quarks vanishes: the individual wave-guide fields h
(q)
06 , h

(q)
07

representing the strong force are proportional to the wavenumber product k
(q)
0 k

(q)
6 , k

(q)
0 k

(q)
7 ,

respectively (cf. eq.(50)), so that
∑

q=b,g,r h
(q)
06 =

∑

q=b,g,r h
(q)
07 = 0. Thus, there exist no far fields

of the colour force, in agreement with experiment.

6 The index g refers in this section to the colour green, as opposed to the previous reference to wave-guide fields.
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For a rigorously spherically symmetric solution, in which all three quarks are located in the
same position, the colour forces cancel not only in the far field, but identically7. There should
therefore exist no inter-nuclear forces, which are normally attributed to the strong forces acting
between closely neighbouring nuclei. However, due to the different electromagnetic charges of the
quarks, two neighbouring nucleons become polarized, thereby breaking the spherical symmetry
and producing a dipole-type near field that is responsible for the inter-nuclear forces.

The representation of the proton-neutron system in terms of real existing quark components
explains also the phenomenon of confinement in particle collision processes. At low collision
energies, the penetration of the particles into each other’s core region is small, and the three
quarks of a particle appear as a single particle. However, at higher collision energies with
pronounced core penetration, the binding forces of the quarks within a particle become small
compared with the forces between the individual quarks of different particles, and the relevant
model is that of direct quark-quark interactions.

The nonlinear eigenmode equations for a set of three four-spinor core-mode pairs,
with associated field equations for the forced wave-guide fields, follow by straightforward
generalization of the scalar model of a single core-mode pair. Thus, eqs. (58)-(60) for a single
four-spinor core mode apply in the three-quark case for each of the three four-spinor core modes,
and the net wave-guide field is again given simply by the superposition of the wave-guide fields
generated by each of the individual core modes.

An additional feature not present in the electron model of a single core-mode pair, however,
is the coupling between the three core-mode pairs via their magnetic fields. Thus one needs to
distinguish between the net spin 1/2 and (unstable) spin 3/2 configurations.

The magnitudes of the wavenumbers characterizing the various forces in the nuclear system
satisfy the inequalities

k
(q)
0 ≪ |k

(q)
4 | ≪ k(c) ≈ |k

(q)
11 | (63)

As in the electron model, the relevant metron parameters can again be chosen to be consistent
with the empirical data.

3.7.4. Weak interactions
In contrast to the metron representation of the strong and electromagnetic forces, which in many
respects parallels that of quantum field theory, the metron and quantum-field representations
of weak interactions differ significantly. In the Standard Model, the Higgs mechanism plays
a central role in explaining the origin of mass, while in the metron model, mass appears
naturally as an intrinsic property of the soliton solutions. Furthermore, in the metron model,
the left-handed chirality of the weak interactions follows from interactions with a finite-mass,
left-hand-polarized background wave field, rather than being defined as a property of the basic
Lagrangian. The polarized background wave field, which interacts only with the the left-handed
spinor components of the soliton solutions, replaces the finite-mass gauge bosons of the Standard
Model.

Figure 11 shows the metron interaction diagram for the example of neutron-proton decay.
The background wave field L− (dotted double-pointed arrow) interacts simultaneously with both
the leptons and quarks. Apart from this symmetry, and the fact that L− represents an external
background wave field component rather than a weak-interaction gauge bosonW−, the diagram
has the same structure as the corresponding Feynman diagram of the Standard Model.

Whether or not the proposed metron picture is able to reproduce the extensive experimental
data on weak interactions remains at this time speculative. The computation of interaction cross

7 The conclusion that the net colour force must vanish also within the particle core has no impact for the
trapping of the quark core modes, since the trapping is produced, as in the electron model, by the KSS fields,
which, although neglible outside the core region, are dominant and do not cancel within the core.
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Figure 11. Metron picture of weak interactions resulting from the coupling of a left-spinor
background wave field L− with left-spinor core-mode components, illustrated for neutron decay.
Cross-bars denote complex conjugate fields (in the limit of zero mass, this is identical to the
anti-particle).

sections follows different rules in the metron model, which is concerned with transformations
of real solitons, than in quantum field theory, which computes transition probabilities between
different states. An additional problem of the proposed metron picture is the experimental
instability of the neutron, which contradicts the general stability result cited in Section 3.5.2.
The interaction with the background field must enable in this case a “tunnelling” from the
quasi-stable neutron soliton to the truly stable proton soliton. However, interactions leading to
transitions between two or more soliton solutions, including also particle collision processes in
which the solitons penetrate each other’s core regions – although well defined mathematically –
lie beyond the present overview.

We have also not discussed unstable mesons and the particles of the second and third families.
However, the basic picture outlined above – leptons and quarks represented as four-spinor core-
mode soliton fields – can be readily applied to the full elementary particle spectrum. Mesons,
for example, can be described, in analogy with the Standard Model, as pairs of quarks and anti-
quarks of the same colour, while the second and third particle family can be represented as soliton
solutions corresponding to the second and third nonlinear eigenmodes of the trapped-mode
equations (20) (as demonstrated for the case of the scalar analogue of the Einstein equations in
H).

4. Quantum phenomena

The description of elementary particles as soliton solutions endowed with both local corpuscular
and large-scale far-field properties represents a first step towards overcoming the wave-particle
duality paradoxes of microphysics. The necessary second step is to explain the typical wave-
like interference properties observed in particle phenomena at lower atomic-scale energy levels.
These result, as mentioned earlier, from interactions of the periodic core mode with other matter.

The particle core modes are generally of too high frequency to directly affect the trajectory
of another particle. However, if the core-mode field is scattered off other matter, the interaction
of the scattered field with the primary core-mode field of the particle itself generates a low-
frequency field through difference-frequency interactions. This is able to modify the particle’s
trajectory, producing the observed wave-like phenomena. We discuss in the following two cases:
the interference patterns of a stream of particles passing through a single or double slit, and
the discrete nature of atomic spectra. Similar interpretations can be given for other quantum
phenomena, such as Compton scattering, the photo-electric effect and Planck’s law.
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Figure 12. Interacting primary and diffracted fields of the metron model.

4.1. Single- and double-slit diffraction
In the metron picture of the single- and double-slit refraction experiment, each particle impinges
on some particular position on the detector behind the screen after having passed through the
single slit or one of the two slits on a well-defined, but in detail non-measurable, trajectory.
The diffraction geometry is shown in Figure 12. The particle source and detector lie in the xy
plane, with a screen in the yz plane orthogonal to the x axis at x = 0. The slits lie parallel to
the z axis. The particles propagate with velocity u parallel to the x-axis, each particle passing
through a slit at some random location x = (0, y0, 0) at time t = 0.

The particle trajectories, after having passed through the diffraction screen, are determined
by the force F produced by the interaction between the incident and diffracted core-mode fields.
This is given by the negative gradient of the interaction potential V , F = −∇V , where V
is proportional to the integral < . . . > over the particle core of the product of the (complex
conjugate) diffracted secondary field (ϕ′)∗ and the primary core-mode field ϕ:

V ∼< ℜ((ϕ′)∗ϕ) > (64)

The diffracted secondary wave decays over a range of the order of κ−1 (eq.(22). This is large
compared with the particle’s Compton scale k−1

0 (eq.23), but nonetheless finite. The scale
κ−1 is an important parameter determining the structure of the observed interference pattern
(Figures 13, 14).

The interference pattern can be determined by Monte Carlo computations of the paths of
individual particles. To compute the particle paths, one needs to: (i) determine the diffracted
secondary core-mode field; (ii) evaluate the interaction between the primary and secondary core-
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Figure 13. Quantum theoretical and metron particle distributions for a monochromatic particle
beam diffracted at a double slit.

Figure 14. Quantum theoretical and metron particle distributions for a monochromatic particle
beam diffracted at a single slit.

mode fields and the resultant force F acting on the diffracted particle; and (iii) integrate the
trajectory of the diffracted particle underlying the force F .

The first step is similar to the standard computation of the diffracted state function in
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quantum theory. The only difference is that, whereas in quantum theory the incident wave is
a monochromatic plane wave ϕi ∼ exp[i(kx − ωt)], in the metron model the amplitude of the
incident core-mode field of the moving particle is dependent on space and time in the laboratory
frame. Thus, both the primary core-mode field and the diffracted field need to be Fourier
decomposed.

In the standard quantum theoretical case of an incident plane wave exp[i(k x−ωt)] and small
diffraction angle θ, the diffracted wave ϕ′ at a location x′ = (x′, y′ = θx′, z′ = 0) and time t′

behind the screen is given by

ϕ′(x′, θ, t′) ∼ f1,2(ζ) exp i(k
′.x′ − ωt′)(x′)−1/2 (65)

with

f1(ζ) = (2d/ζ) sin ζ (single slit), (66)

f2(ζ) = (2d/ζ)

[

sin

{(

1 +
a

2d

)

ζ

}

− sin

{

a

2d
ζ

}]

(double slit), (67)

where ζ = θkd, d is the slit width (double-slit case) or slit half-width (single slit case), a is the
double-slit separation, and k′ = k(x′/|x′|) is the diffracted wavenumber.

If, instead of a plane wave, the incident field is the core-mode field of a particle travelling
through a slit on the path x = ut, y = y0, z = 0, the relations (65)-(67) remain basically
unchanged, except that the incident field is multiplied by a modulation factor propagating with
the particle velocity u. The diffracted wave field is then similarly modulated, the modulation
factor also propagating with group velocity at the speed of the particle, in the slightly modified
direction of the diffracted wavenumber. Thus, the incident and diffracted wave field are both
transported in a frame moving with the particle.

In addition to propagating at the speed of the particle, the diffracted wave pattern experiences
dispersion. This results in a spreading of the wave pattern in the x and z directions and a
reduction of the diffracted wave amplitude by an additional factor 1/x′. The net diffracted field
at the position (x′, t′) then becomes

ϕ′(x′, θ, t′) ∼ f1,2(ζ) exp i(k
′.x′ − ωt′) exp(−κx′)(x′)−3/2 (68)

The probability distribution of the diffracted particles is governed by the tendency of the mean
force F̄ = −∇V̄ in the far field to drive the particles into the regions of high V̄ ∼ f1,2(ζ)

2.
The resulting probability distribution resembles, but is not identical to, the quantum theoretical
pattern f1,2(ζ)

2.
Figures 13 and 14 show the distributions computed for an ensemble of 40,400 particle

trajectories, together with the predictions of quantum theory, for the double- and single-slit
cases, respectively. The classical and quantum theoretical distributions agree rather closely for
the double-slit case. However, the single-slit distributions, although agreeing in general structure
and in the positions of the diffraction maxima, differ in detail. The fit could presumably have
been improved by suitable modification of the initial conditions and the parameters of the metron
model. A systematic least-square fit was not attempted. However, the point of the exercise is not
to reproduce the quantum theoretical predictions, but rather to demonstrate that both quantum
theory and a classical model are able to explain, qualitatively, the observed wave-like interference
features of particle experiments. Which model yields a better quantitative description of reality
must be decided by experiment.

The detailed quantitative verification of de Broglie’s 1924 prediction [11] of the wave-like
nature of particles in particle diffraction experiments has proved notoriously difficult. Although
the positions of the interference maxima predicted by quantum theory were verified in many

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012023 doi:10.1088/1742-6596/437/1/012023

26



experiments, quantitative verification of the complete quantum theoretical diffraction patterns
was achieved only after almost seventy years using very low energy neutrons by Zeilinger et
al [48] and Tschernitz et al [45]. In the first of these experiments, excellent agreement with
quantum theory was shown for the case of double-slit diffraction, but in the single-slit case,
small but statistically significant deviations were found between the predicted and measured
diffraction patterns (as well as in a further unpublished experiment mentioned by the authors).
Good agreement for the single-slit case was finally achieved by Tschernitz et al, but without
clearly identifying the origin of the discrepancies in the first experiment. However, the good
agreement shown by Zeilinger et al in the double-slit case also needs to be revisited: our repeat of
the quantum theoretical computations revealed unresolved statistically significant discrepancies
(paper in preparation). At this time, the detailed experimental verification or falsification of
both the quantal and metron representation of the single- and double-slit diffraction experiments
must be regarded as open.

4.2. Atomic spectra
The metron atomic model represents an amalgam of the original Bohr orbital model and the
modern wave-dynamics approach of quantum electrodynamics. We consider individual electrons
orbiting an atomic nucleus, with associated core-mode fields that are scattered at the atomic
nucleus (Figure 15). The scattered core-mode fields ψ satisfy essentially the same field equations

(iγλDλ − ω̂)ψ = F (69)

as in QED, where ω̂ = (−klk
l)1/2 = (k20+κ

2)1/2 (eq.(57)) represents the electron mass, to within
a small correction term of order (κ/k0)

2 (cf. eq.(23)),

Dλ = ∂λ − ieAλ. (70)

is the covariant derivative in the presence of the electromagnetic protential Aλ of the nucleus,
and e is the electron charge,.

The only significant difference is that, in contrast to the homogeneous eigenmode equations
of QED, eq. (69) includes a source term F representing the forcing by the orbiting electron.

The interaction of the scattered core-mode field with the electron’s primary core-mode field
produces a low-frequency field which modifies the electron orbit, in the same way as in the
particle diffraction case discussed previously. For an arbitrary orbit, the interaction fields and
the resultant orbital perturbations are normally small. The electrons therefore gradually drift
into orbits of smaller radii through radiative damping. However, for certain discrete orbital
parameters, resonances arise in the interacting fields. The perturbations can then no longer be
treated as a small stationary response, but grow with time. The solutions stabilize in this case to
a stationary state in which the radiative damping of the electron is balanced by the forcing due
to the resonant interaction between the electron and the nucleus. The associated net radiative
damping of the complete coupled electron-nucleus system vanishes.

For the case of circular orbits, the resonant interaction conditions for the primary and
scattered core modes are found to be identical to lowest order to the QED eigenmode conditions,
while the associated resonant orbital conditions correspond to Bohr’s original orbital conditions
(H). Detailed computations at the extremely high level of accuracy as achieved in the QED
computations of the hydrogen atom, for example, have still to be performed. Although it may
appear intrinsically unlikely that the same results as QED, based on an array of higher order
corrections, including renormalization, can be achieved with an alternative classical theory, it
is perhaps encouraging that Barut [3] has claimed that a non-second-quantized theory, without
invoking renormalization, yields still higher agreement with experiment than QED.
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Figure 15. Metron model of electron orbiting an atomic nucleus. The low-frequency field
produced by the difference interaction between the primary core-mode field of the electron and the
secondary core-mode field scattered at the atomic nucleus modifies the electron orbit. Resonance
between the electron orbit and the difference-frequency field produces trapping of the electron in
discrete orbits in accordance with Bohr’s original discrete-orbit model. The resonant scattered
core-mode fields correspond to the QED eigenmodes (reproduced from [27]).

The attraction of the present ansatz is that it explains the discrete nature of atomic spectra
as a resonance phenomenon of real existing particles supporting real continuous fields, without
the need to switch pictures between fields and particles. Thus the photo-electric effect, for
example, in which discrete electron particles are released from atomic states through incident
electromagnetic radiation is readily explained without rejecting the concept of discrete localized
particles in the description of the atomic states that release the observed discrete particles.

5. Summary

As precondition for the development of a classical unified theory, we have shown first that Bell’s
theorem, which has been widely interpreted as implying that classical theories are incapable
of explaining the phenomenon of entanglement observed in microphysical phenomena, does
not apply to classical models satisfying time-reversal symmetry. Entanglement is a universal
property of all theories exhibiting time-reversal symmetry, whether classical or quantal. It
follows directly from the relativistic implications of Newton’s third law actio = reactio.

The basic concept of our classical model is very simple: the wave-particle duality paradoxes
that led to the creation of quantum theory and its later special relativistic generalization,
quantum field theory, can be explained in terms of the periodic soliton solutions of the Einstein
vacuum equations ELM = 0 in a twelve dimensional space. The finite extent and periodicity of
the solitons provide a straightforward classical interpretation in terms of real existing objects of
the various abstract features of quantum theory and quantum field theory.

The metron core modes correspond in many respects to the state function of quantum theory.
From the metron viewpoint, the success of quantum theory, for example in atomic physics, is

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012023 doi:10.1088/1742-6596/437/1/012023

28



attributed to the theory reproducing the field properties of the core mode, while its conceptual
difficulties arise from its inability to capture also the associated corpuscular features. This is
elevated to a quantum theoretical theorem in Heisenberg’s uncertainty principle. This is not
in conflict with the metron model. Quantum theory is regarded as a theory of incomplete
information. The uncertainty principle is justified empirically for both quantum theory and the
metron model by the usual argument that initially limited information cannot be augmented
subsequently by measurements using some (similarly imperfectly known) system that modifies
the state to be measured.

Other basic quantal concepts, such as Fermi-Dirac and Bose-Einstein statistics, or vacuum
state fluctuations, can be similarly translated in the metron model into classical processes
involving real existing objects – avoiding thereby also divergent integrals and the need for
renormalization.

In contrast to the mathematical formulation of quantum field theory based on the Standard
Model Lagrangian and its symmetries, we have made no reference in the metron model as
summarized here to the Einstein-Hilbert Lagrangian or the invariance of the Einstein equations
with respect to coordinate transformations. We have simply exploited the fact that the Einstein
equations are nonlinear, and then applied standard perturbation theory to study the interactions
between the periodic core modes and higher-order components of the soliton solutions. The
symmetries of the Standard Model correspond in the metron picture to the invariance with
respect to translations in the fibre coordinates (i.e. phase shifts) and, in the case of strong
interactions, the geometrical symmetries of the wavenumber configurations. Whether the Higgs
mechanism and the internal breaking of parity symmetry can be replaced by the proposed
simpler interaction with an external left-polarized high-mass background wave field remains to
be investigated. In principle, however, the mathematics of the metron model is basically simple
and can be summarized in terms of elementary interaction diagrams. This applies both to the
structure of elementary particles and the explanation of the wave-particle duality paradoxes
observed at lower energies.

Our overview of a proposed classical interpretation of elementary particles and quantum
phenomena is necessarily of wide sweep and leaves open many questions. However, an alternative
to a technically highly successful theory that has evolved over nearly a century can clearly not be
developed in only a few papers. A comparison of the present presentation with its predecessors
[23] - [28] reveals that, although the basic concepts have withstood the test of time, the metron
model is still very much in flux. Nevertheless, a number of open questions listed in the conclusions
of [26], such as the stability and uniqueness of the metron solitons and the origin of the basic
physical constants, have now been successfully addressed.

Our motivation has not been to explain experimental results in conflict with current physical
theory - often regarded as the litmus test of a new paradigm - but rather to offer an
alternative view of physical reality that unifies the general relativistic theory of gravity with
our understanding of elementary particles and quantum phenomena, avoiding in the process the
conceptual difficulties of quantum field theory. Despite the undisputed successes of quantum
field theory, its underlying conceptual fuzzines and its incompatability with general relativity
have concerned not only Einstein, but many leading physicists. We believe that the path we
have explored offers a new perspective for overcoming these inconsistencies and developing a
conceptually better founded unified theory.
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[44] H. Tetrode. Über den Wirkungszusammenhang der Welt. Eine Erweiterung der klassischen Dynamik.

Zeitschrift für Physik, 10:317–328, 1922.
[45] M. Tschernitz, R. Gähler, W. Mampe, B. Schillinger, and A. Zeilinger. Precision measurements of single slit

diffraction with very cold neutrons. Phys.Lett., A 164:365–368, 1992.
[46] J.A. Wheeler and R.P. Feynman. Interaction with the absorber as the mechanism of radiation.

Rev.Mod.Phys., 17:157–181, 1945.
[47] J.A. Wheeler and R.P. Feynman. Classical electrodynamics in terms of direct particle interactions.

Rev.Mod.Phys., 21:425–433, 1949.
[48] A. Zeilinger, R. Gähler, C.G. Shull, W. Treimer, and W. Mampe. Single- and doppel-slit diffraction of

neutrons. Rev.Mod.Phys., 60:1067–1073, 1988.
[49] A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer. Happy centenary, photon. Nature, 433:230–238,

2005.

IARD2012 IOP Publishing
Journal of Physics: Conference Series 437 (2013) 012023 doi:10.1088/1742-6596/437/1/012023

31




